Autoras: Gloria Jarne, Esperanza Minguillón, Trinidad Zabal

TIPOS DE FUNCIONES

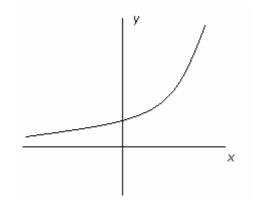
• Una función f(x) se dice:

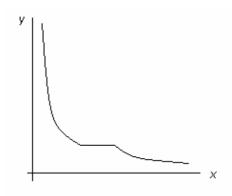
Función **creciente** en un intervalo $I \subseteq D$ si para cualquier par de puntos x_1 , $x_2 \in I$, tales que $x_1 < x_2$ se verifica $f(x_1) \le f(x_2)$.

Función **estrictamente creciente** en un intervalo $I \subseteq D$ si para cualquier par de puntos $x_1, x_2 \in I$, tales que $x_1 < x_2$ se verifica $f(x_1) < f(x_2)$.

Función **decreciente** en un intervalo $I \subseteq D$ si para cualquier par de puntos x_1 , $x_2 \in I$, tales que $x_1 < x_2$ se verifica $f(x_1) \ge f(x_2)$.

Función **estrictamente decreciente** en un intervalo $I \subseteq D$ si para cualquier par de puntos $x_1, x_2 \in I$, tales que $x_1 < x_2$ se verifica $f(x_1) > f(x_2)$.





Función estrictamente creciente en R

Función decreciente, pero no estrictamente decreciente en $(0, +\infty)$

• Una función f(x) se dice:

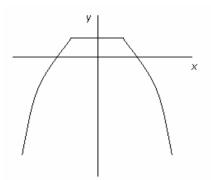
Función **cóncava** en un intervalo $I \subseteq D$, si dados dos puntos cualesquiera x_1 , $x_2 \in I$ el segmento que une los puntos $(x_1, f(x_1))$ y $(x_2, f(x_2))$ nunca se sitúa por encima de la gráfica.

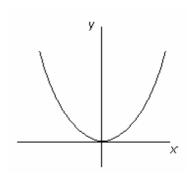
Función **estrictamente cóncava** en un intervalo $I \subseteq D$, si dados dos puntos cualesquiera x_1 , $x_2 \in I$, el segmento que une los puntos $(x_1, f(x_1))$ y $(x_2, f(x_2))$ se sitúa por debajo de la gráfica.

Función **convexa** en un intervalo $I \subseteq D$, si dados dos puntos cualesquiera x_1 , $x_2 \in I$ el segmento que une los puntos $(x_1, f(x_1))$ y $(x_2, f(x_2))$ nunca se sitúa por debajo de la gráfica.

Función **estrictamente convexa** en un intervalo $I \subseteq D$, si dados dos puntos cualesquiera x_1 , $x_2 \in I$, el segmento que une los puntos $(x_1, f(x_1))$ y $(x_2, f(x_2))$ se sitúa por encima de la gráfica.

Autoras: Gloria Jarne, Esperanza Minquillón, Trinidad Zabal





Función cóncava pero no estrictamente cóncava en R

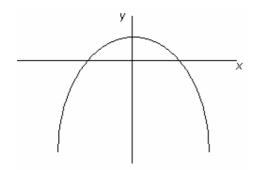
Función estrictamente convexa en R

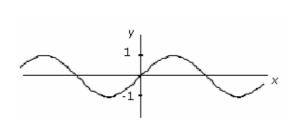
• Una función f(x) se dice:

Función **acotada superiormente** si existe un número M > 0 cumpliendo que para cualquier valor x de D se verifica $f(x) \le M$.

Función **acotada inferiormente** si existe un número m > 0 cumpliendo que para cualquier valor x de D se verifica $f(x) \ge m$.

Función **acotada** si está acotada inferior y superiormente. Es decir, si existe un número K tal que para cualquier valor x de D, $|f(x)| \le K$, o equivalentemente, $-K \le f(x) \le K$.





Función acotada superiormente y no acotada inferiormente en R

Función acotada superiormente por 1 y acotada inferiormente por -1

• Una función f(x) se dice:

Función **par** si para cualquier valor x de D se cumple f(-x) = f(x). En este caso, la gráfica de la función es simétrica respecto del eje OY.

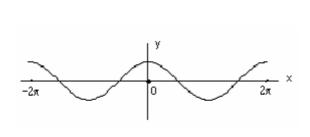
Función **impar** si para cualquier valor x de D se cumple f(-x) = -f(x). En este caso, la gráfica de la función es simétrica respecto del origen.

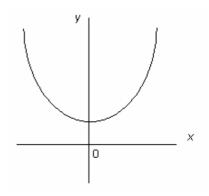
Función **periódica** si existe un número M > 0 cumpliendo que para cualquier valor x de D se verifica f(x + M) = f(x).

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Unidad didáctica 7. Funciones reales de variable real

Autoras: Gloria Jarne, Esperanza Minguillón, Trinidad Zabal





Función periódica de periodo 2π

Función par

Ejemplo 4: Observando la gráfica de la función $f(x) = x^3$ que se muestra a continuación, se tiene que f(x) es estrictamente creciente en R, estrictamente cóncava en $(-\infty, 0)$, estrictamente convexa en $(0, +\infty)$, no está acotada superior ni inferiormente y es impar, ya que $f(-x) = (-x)^3 = -f(x)$.

