EJERCICIOS DE CARÁCTER ECONÓMICO DE FUNCIONES REALES

1. Sea la siguiente función de demanda general de un bien A, $q_a = \frac{2y - 15p_a - 8p_b + 6p_c}{5p_a}$, siendo y

la renta, p_a el precio del bien A, p_b y p_c los precios de otros bienes.

Sabiendo que inicialmente y = 62, $p_a = 2$, $p_b = 3$ y $p_c = 5$.

- a) Determinar la cantidad de ese bien que inicialmente se demanda.
- **b)** Obtener la expresión de su demanda directa .
- c) Obtener la expresión de la demanda en función de la renta.
- d) Determinar la relación existente entre los bienes A y B, sabiendo que el bien B tiene una demanda decreciente respecto de su precio.
- e) Determinar la relación existente entre los bienes A y C, sabiendo que el bien C tiene una demanda decreciente respecto de su precio.

Solución

a) Sustituyendo los valores iniciales en la función de demanda queda

$$q_a = \frac{2.62 - 15.2 - 8.3 + 6.5}{5.2} = \frac{124 - 30 - 24 + 30}{10} = 10$$

b) Hay que encontrar la función que nos da el valor de la demanda de A en función de su precio, $q_a = f(p_a)$. Sustituyendo en q_a las condiciones iniciales de y, p_b y p_c , se tiene:

$$q_a = \frac{2.62 - 15p_a - 8.3 + 6.5}{5p_a} = \frac{124 - 15p_a - 24 + 30}{5p_a} = \frac{130 - 15p_a}{5p_a}$$

c) Hay que encontrar la función que nos da el valor de la demanda de A en función de la renta, $q_a = f(y)$. Sustituyendo en q_a las condiciones iniciales de p_a , p_b y p_c , se tiene:

$$q_a = \frac{2y - 15.2 - 8.3 + 6.5}{5.2} = \frac{2y - 30 - 24 + 30}{10} = \frac{2y - 24}{10} = \frac{y - 12}{5}$$

d) Hay que encontrar la función que nos da el valor de la demanda de A en función del precio del bien B, $q_a = f(p_b)$. Sustituyendo en q_a las condiciones iniciales de y, p_a y p_c , se tiene:

$$q_a = \frac{2.62 - 15.2 - 8p_b + 6.5}{5.2} = \frac{124 - 30 - 8p_b + 30}{10} = \frac{124 - 8p_b}{10}$$

Observando la función obtenida, $q_a = \frac{124 - 8p_b}{10}$, se ve que la demanda del bien A disminuye cuando aumente el precio p_b .

Por otra parte, como la demanda del bien B es decreciente, ésta disminuye al aumentar p_b . Por tanto, se concluye que los bienes A y B son bienes complementarios.

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Unidad didáctica 7. Funciones reales de variable real

Autoras: Gloria Jarne, Esperanza Minquillón, Trinidad Zabal

e) Hay que encontrar la función que nos da el valor de la demanda de A en función del precio del bien C, $q_a = f(p_c)$. Sustituyendo en q_a las condiciones iniciales de y, p_a y p_b , se tiene:

$$q_a = \frac{2.62 - 15.2 - 8.3 + 6p_c}{5.2} = \frac{124 - 30 - 24 + 6p_c}{10} = \frac{70 + 6p_c}{10}$$

Observando la función obtenida $q_a = \frac{70+6p_c}{10}$, se ve que la demanda del bien A aumenta al aumentar el precio p_c .

Por otra parte, como la demanda del bien C es decreciente, ésta disminuye al aumentar p_c . Por tanto, se concluye que los bienes A y C son bienes sustitutivos.

- **2.** Supongamos que el coste total de fabricación de x unidades productos está dado por la función: $C(x) = 5x^2 + x + 32$.
- a) ¿Cuál es el coste de fabricación de 12 productos?
- b) ¿Cuál es el coste de fabricación del duodécimo producto?
- c) Expresar el coste de fabricación medio como función de x.

Solución

- a) Sustituyendo en la función C(x) el valor de x por 12 queda: $C(12) = 5.12^2 + 12 + 32 = 764$
- **b)** El coste de fabricación del duodécimo producto es C(12) C(11) = 764 648 = 116
- c) El coste de fabricación medio es $CM_e(x) = \frac{C(x)}{x} = \frac{5x^2 + x + 32}{x} = 5x + 1 + \frac{32}{x}$