CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Unidad didáctica 4. Números reales y números complejos

Autoras: Gloria Jarne, Esperanza Minguillón, Trinidad Zabal

6. Resolver en R y en C las siguientes ecuaciones:

a)
$$x^4 + 3x^2 - 10 = 0$$

b)
$$x^3 + 5x^2 + 6x = 0$$

c)
$$x^4 + 2x^2 + 1 = 0$$

Solución

a) $x^4 + 3x^2 - 10 = 0$ es una ecuación bicuadrada, por lo que haciendo $t = x^2$ se obtiene la ecuación polinómica de segundo grado, $t^2 + 3t - 10 = 0$, cuyas soluciones son:

$$t = \frac{-3 \pm \sqrt{3^2 - 4.1.(-10)}}{2} = \frac{-3 \pm \sqrt{49}}{2} = \frac{-3 \pm 7}{2} = \begin{cases} -5 \\ 2 \end{cases}$$

- Considerando la solución t=-5, se obtiene $x^2=-5$, de donde $x=\pm\sqrt{-5}=\pm\sqrt{5}$ $\sqrt{-1}=\pm\sqrt{5}$ i
- Considerando la solución t=2, se obtiene $x^2=2$, de donde $x=\pm\sqrt{2}$

Por tanto, las soluciones en \mathbf{R} son $x=\sqrt{2}$ y $x=-\sqrt{2}$ y las soluciones en \mathbf{C} son, además de las dos anteriores, $x=\sqrt{5}$ i y $x=-\sqrt{5}$ i.

b) Factorizando el polinomio, la ecuación $x^3 + 5x^2 + 6x = 0$ queda $x(x^2 + 5x + 6) = 0$, y teniendo en cuenta que para que el producto de dos factores sea 0 basta que lo sea uno de ellos, se obtiene que o bien x = 0 o bien $x^2 + 5x + 6 = 0$, de donde, $x = \frac{-5 \pm \sqrt{5^2 - 4.1.6}}{2} = \frac{-5 \pm \sqrt{1}}{2} = \frac{-5 \pm 1}{2} = \begin{cases} -3 \\ -2 \end{cases}$

Por tanto, las soluciones tanto en \mathbb{R} como en \mathbb{C} son x=0, x=-2 y x=-3.

c) $x^4 + 2x^2 + 1 = 0$ es una ecuación bicuadrada, por lo que haciendo $t = x^2$ se obtiene la ecuación polinómica de segundo grado, $t^2 + 2t + 1 = 0$, que se puede escribir de la forma, $(t+1)^2 = 0$, cuya solución es t = -1, doble.

Considerando la solución t=-1, se obtiene $x^2=-1$, de donde $x=\pm\sqrt{-1}=\pm i$

Por tanto, la ecuación no tiene soluciones en \mathbb{R} y las soluciones en \mathbb{C} son x = i y x = -i, dobles.