CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Unidad didáctica 3. Trigonometría

Autoras: Gloria Jarne, Esperanza Minquillón, Trinidad Zabal

Relación entre las razones trigonométricas de un ángulo

Las razones trigonométricas de un ángulo no son independientes, ya que están relacionadas entre sí mediante ciertas igualdades, como por ejemplo:

$$sen^2 \alpha + cos^2 \alpha = 1$$
 $tg\alpha = \frac{sen\alpha}{cos\alpha}$
 $1 + tg^2 \alpha = \frac{1}{cos^2 \alpha}$

Ejemplo 5:

a) Sabiendo que α es un ángulo positivo menor que $3\pi/2$ y que sen α = -3/5 calcular su coseno y su tangente.

Sustituyendo el valor del seno en $\sin^2\alpha + \cos^2\alpha = 1$, se tiene $\frac{9}{25} + \cos^2\alpha = 1$, de donde $\cos\alpha = \pm \frac{4}{5}$, a continuación se determina cuál de estos dos valores corresponde al del coseno pedido.

Al ser α un ángulo positivo menor que $3\pi/2$ y con seno negativo al representarlo en la circunferencia unidad su segundo lado cae en el tercer cuadrante, por lo tanto su coseno es negativo, luego $\cos\alpha = -\frac{4}{5}$

Para calcular el valor de la tangente, se sustituye el seno y el coseno en $tg\alpha = \frac{sen\alpha}{cos\alpha}$, obteniéndose $tg\alpha = \frac{3}{4}$.

b) Sabiendo que α es un ángulo positivo menor que π y que tg α = -1 ´5 calcular su seno y su coseno.

Sustituyendo el valor de la tangente en la igualdad 1 + $tg^2\alpha = \frac{1}{\cos^2\alpha}$, se tiene la ecuación 1 + 2^25 = $\frac{1}{\cos^2\alpha}$, de donde

$$\cos \alpha = \pm \frac{1}{\sqrt{3'25}} = \pm \sqrt{\frac{100}{325}} = \pm \frac{10}{5\sqrt{13}} = \pm \frac{2}{\sqrt{13}}$$
.

Al ser α positivo, menor que π y con tangente negativa es un ángulo del segundo cuadrante, por lo que el coseno es negativo, por tanto, de las dos soluciones obtenidas de la ecuación se concluye que $\cos \alpha = -\frac{2}{\sqrt{13}}$

Para calcular el valor del seno, se sustituye el coseno y la tangente en $tg\alpha = \frac{sen\alpha}{cos\alpha}$, obteniéndose $\frac{-15}{10} = \frac{sen\alpha}{\frac{-2}{\sqrt{13}}}$, de donde

se deduce que $sen \alpha = \frac{3}{\sqrt{13}}$